Choose the vertices of the triangle $x_1, x_2, x_3$ to be $x_1<x_2<x_3$, then
\begin{align*} m_1 = \frac{y_2-y_2}{x_2-x_1}, m_2 = \frac{y_3-y_2}{x_3-x_2}, m_3 = \frac{y_3-y_1}{x_3-x_1}.\end{align*}
The area of the triangle $ A $ is
\begin{align*} A =& \int_{x_1}^{x_2}|[m_1(x-x_1)+y_1]-[m_3(x-x_1)+y_1]|dx \\&+ \int_{x_2}^{x_3}|[m_2(x-x_3)+y_3]-[m_3(x-x_3)+y_3]|dx \\=&\int_{x_1}^{x_2}|(m_1-m_3)(x-x_1)|dx\\&+ \int_{x_2}^{x_3}|(m_2-m_3)(x-x_3)|dx \\=& \int_{0}^{x_2-x_1}|(m_1-m_3)x|dx+ \int_{x_2-x_3}^{0}|(m_2-m_3)x|dx \\=& |m_1-m_3|\frac{1}{2}(x_2-x_1)^2+|m_2-m_3|\frac{1}{2}(x_2-x_3)^2.\end{align*}
If $m_1<m_3$, then $m_2>m_3$. $\Rightarrow m_1-m_3<0, m_2-m_3>0$
If $m_1>m_3$, then $m_2<m_3$. $\Rightarrow m_1=m_3>0, m_2-m_3<0$
So
\begin{align*} A =& \frac{1}{2}\left|(m_1-m_3)(x_2-x_1)^2-(m_2-m_3)(x_2-x_3)^2\right| \\ =&\frac{1}{2}\left|(y_2-y_1)(x_2-x_1)-\frac{y_3-y_1}{x_3-x_2}(x_2-x_1)^2 \right.\\ &\left.-(y_3-y_2)(x_3-x_2)+\frac{y_3-y_1}{x_3-x_1}(x_3-x_2)^2\right| \\ =& \frac{1}{2}\left|(y_2-y_1)(x_2-x_1)-(y_3-y_2)(x_3-x_2)\right.\\ &\left.+\frac{y_3-y_1}{x_3-x_1}(x_3-x_2-x_2+x_1)(x_3-x_2+x_2-x_1)\right| \\ =& \frac{1}{2}\left|(y_2-y_1)(x_2-x_1)-(y_3-y_2)(x_3-x_2)+(y_3-y_1)(x_3+x_1)\right| \\ =& \frac{1}{2}\left|-x_1y_2+x_2y_1-x_2y_3+x_3y_2-x_3y_1+x_1y_3\right| \\ =& \frac{1}{2}\left|\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}+\begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} + \begin{vmatrix} x_3 & x_1 \\ y_3 & y_1 \end{vmatrix}\right| \\ =& \frac{1}{2}\left|\begin{vmatrix} 1 & 1 & 1 \\ x_3 & x_1 & x_2 \\ y_3 & y_1 & y_2 \end{vmatrix}\right|\end{align*}
Although the values of the x-axis of two vertuces are same, you use this formula by taking the limit.
'Study > Mathematics' 카테고리의 다른 글
실수 계수를 갖는 다항식은 1차 식과 2차 식만으로 인수 분해 될 수 있다. (2) | 2014.05.17 |
---|---|
[미적분학] 미적분학 문제 $\int^a_0\frac{f(x)dx}{f(x)+f(a-x)}$ (0) | 2014.05.11 |
[미적분학1] 쌍곡선 함수로 치환하여 적분하기 (0) | 2012.10.01 |
[미적분학1] Orthogonal (0) | 2012.09.27 |
[푸리에 변환] F(e^(-ax^2)) 계산 (3) | 2012.07.12 |