Study/Mathematics2015. 3. 24. 20:06
Problem.

Show that

for nxn matrices, if $\mathbf{AB}$ is invertible, then $\mathbf A$ and $\mathbf B$ are also invertible.

 

 

Theorem.

A square matrix $\mathbf{A}$ is invertible $\iff$ $\mathbf x=\mathbf 0$ is the only solution of the matrix equation $\mathbf{Ax}=\mathbf 0$

 

Corollary.

For any square matrix $\mathbf A$ and $\mathbf B$,

\begin{align*} \mathbf{AB}=\mathbf I \iff \mathbf{BA}=\mathbf I \end{align*}

 

<proof>

Assume $\mathbf{AB=I}$.

Let $\mathbf{Ax=0}$ be a matrix equation.

Then

\begin{align*} \mathbf{Ax=0} &\Rightarrow \mathbf{BAx=B0} \\ &\Rightarrow \mathbf{Ix=0} \\ &\Rightarrow \mathbf{x=0}. \end{align*}

Thus, by the above theorem, $\mathbf A$ is invertible.

Hence

\begin{align*} \mathbf{AB=BA=I} \end{align*}

 

 

Solution to the problem

 

Since $\mathbf{AB}$ is invertible, $\exists \mathbf{C} \text{   such that   } \mathbf{ABC=CAB=I}$.

Then

\begin{align*} \mathbf{ABC=A(BC)=I} \Rightarrow \mathbf{A(BC)=(BC)A=I} \Rightarrow \exists\mathbf{A}^{-1} \text{   and   } \mathbf{A}^{-1}=\mathbf{BC}\\ \mathbf{CAB=(CA)B=I} \Rightarrow \mathbf{(CA)B=B(CA)=I} \Rightarrow \exists\mathbf{B}^{-1} \text{   and   } \mathbf{B}^{-1}=\mathbf{CA}\end{align*}

 

 

Posted by 블루쨈